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ABSTRACT

We present a modern account of Ptolemy’s construction of the regular pentagon, as found
in a well-known book on the history of ancient mathematics (Aaboe [1]), and discuss how
anachronistic it is from a historical point of view. We then carefully present Euclid’s original
construction of the regular pentagon, which shows the power of the method of equivalence of
areas. We also propose how to use the ideas of this paper in several contexts.

Key-words: Regular pentagon, regular constructible polygons, history of Greek mathe-
matics, equivalence of areas in Greek mathematics.

1 Introduction

This paper presents FEuclid’s construction of the regular pentagon, a highlight of the
Elements, comparing it with the widely known construction of Ptolemy, as presented
by Aaboe [1]. This gives rise to a discussion on how to view Greek mathematics and
shows the care on must have when adopting adapting ancient mathematics to modern
styles of presentation, in order to preserve not only content but the very way ancient
mathematicians thought and viewed mathematics. *

The material here presented can be used for several purposes. First of all, in courses
for prospective teachers interested in using historical sources in their classrooms. In
several places, for example Brazil, the history of mathematics is becoming commonplace
in the curricula of courses for prospective teachers, and so one needs materials that will
awaken awareness of the need to approach ancient mathematics as much as possible in
its own terms, and not in some pasteurized downgraded versions. 2 As a matter of fact,
this text has been used in a course for future secondary school mathematics teachers.

Secondly, it can also be used in secondary education. In many countries, most sec-
ondary education mathematics textbooks present just a series of results, some of them
justified by examples, the use of analogies and heuristics, but do not show a single proof.
So, using Frank Lester’s words, many, many, students finish their schooling without ever
“meeting the queen”. 3 The construction of the pentagon is genuine mathematics, deal-
ing with a result that arouses interest and at the level of secondary school students and
it very suited to show the power of the deductive method in mathematics.

In the third place, it is important to show students or readers how mathematics
changed along the centuries, how its tools and techniques evolved, and how to appreciate
the mathematical accomplishments of past generations, what kind of problems they
attacked, how their results were communicated. Discussions on these subjects would
certainly enlarge the cultural awareness of students and readers.

1For a good discussion, see Schubring [11].
2T am definitely not implying that Aaboe’s treatment, discussed in this paper, is such a version.
3An allusion to Bell’s Mathematics: Queen and servant of science.



And last but not least, the construction deserves study because it is beautiful math-
ematics, done with very basic and simple tools.

2 The regular polygons

Figures and configurations that show regularities have always been found interesting.
The roses, friezes and tilings of the plane have been widely explored, over the cen-
turies and in countless cultures, by artists and decorators, and studied mathematically,
providing a fine example of group theory applied to geometry and crystallography.

The regular polygons, central in geometry, stand out among the important fig-
ures that show regularities. The first proposition of Euclid’s Elements shows how to
construct an equilateral triangle. The square also plays an important role in Greek
mathematics, in which a major problem was to “square” a figure, that is, to build a
square with area equal to the area of that figure. The regular pentagon was impor-
tant to the Pythagoreans, starting from the sixth century B.C.E., since the pentagram
(the regular star polygon of five sides, Figure 1) was the symbol of the Pythagorean
brotherhood.

Figure 1: The regular pentagram

The Pythagoreans may have known the fact that the diagonal and the side of the
pentagon are incommensurable. This can be seen taking into account that the inter-
section of the diagonals of the pentagon ABC'DE define a new pentagon, FFGHK,
and so on (Figure 2). If the diagonal and the side of ABCDE are commensurable,
the same happens to the sides and diagonals of all the pentagons so obtained, and we
arrive at a contradiction. This fact, together with the familiarity of the Pythagoreans
with the pentagon, led von Fritz [13] to propose that the existence of incommensurable
magnitudes was discovered using the pentagon and its diagonal, and not the square
and its diagonal. However, von Fritz’s opinion is not the favorite among historians of
mathematics.

One of the highlights of the Elements of Euclid is the construction, in Book IV, of
the regular pentagon. Euclid needs it in book XIII, in which he studies the five regular
polyhedra, for the construction of the regular dodecahedron, whose sides are regular
pentagons. He uses only the non-graduated ruler and the compass, as happens in all
constructions in the Elements.

4We would like to thank the referees for the excellent suggestions, which helped to improve this
paper.



The search for the construction of the regular polygons has been a recurring theme
among mathematicians. When they could not find constructions that obey the Eu-
clidean canons, they were able, at least, to find approximate constructions, or which
require other resources besides the ruler and compass, as seen, for example, in the
construction for the regular heptagon given by Archimedes.

Figure 2: The regular pentagon and its diagonals

A complete answer for which regular polygons can be constructed with ruler and
compass was given only in the nineteenth century, by Gauss and Wantzel. The first
proved, in 1796, that it is possible to construct with ruler and compass the regular
polygon of 17 sides. A little later, in his Disquisitiones Arithmeticae [4], he proved
that a sufficient condition for the regular n-sided polygon to be constructible with ruler
and compass is that n, the number of sides of the polygon, be of the form

n=2"pipy. .. ps,

in which all p’s are Fermat primes, that is, primes of the form p; = 22" + 1. Since the
Fermat primes known presently are 3, 5, 17, 257 and 65537, it is possible, in principle,
to construct the regular polygons with the number of sides equal to these primes or
to products thereof. Thus, the regular polygons with less than 300 sides which can be
constructed with ruler and compass are the ones with the following number of sides:

3,4,5,6,8,10, 12, 15, 16, 17, 20, 24, 30, 32, 3, 4, 5, 6, 8, 10, 12, 15, 16, 17, 20, 24, 30,
32, 34, 40, 48, 51, 60, 64, 68, 80, 85, 96, 102, 120, 128, 34, 40, 48, 51, 60, 64, 68, 80, 85,
96, 102, 120, 128, 136, 160, 170, 192, 204, 240, 255, 256, 257, 272 136, 160, 170, 192
204, 240, 255, 256, 257, 272.

Gauss stated that his condition is also necessary, but this was proved only by Pierre
Wantzel, in 1836 ([14]), a French mathematician, in a work that proved the impossibility
of solving the problems of angle trisection and of doubling the cube.

The criterion of Gauss does not provide an explicit construction of a regular poly-
gon. The German mathematician Johannes Erchinger gave such a construction, with
ruler and compass, for the polygon of 17 sides, in 1825, and Friedrich Julius Richelot
proposed, in 1832, a method to construct the polygon of 257 sides, but there are doubts
about its validity (see Reich [10]).



3 A well-known construction of the regular pentagon

There are many constructions of the regular pentagon, some of which use only the
tools prescribed by Euclid. One, well known and particularly simple, due to Ptolemy, °
proceeds as follows to inscribe a regular pentagon in the circle of center O and radius

OB (Figure 3).

Figure 3: The construction of a regular pentagon inscribed in a circle

Let OP be the perpendicular to the diameter AB, starting from the center O of the
circle, and M the midpoint of OB. With center M and radius M P draw the arc of a
circle which cuts AB in R. Then RO will be the side of the regular decagon inscribed
in the circle of radius OB. Once one knows the side of the regular decagon, it is easy
to construct the pentagon, connecting the vertices of the decagon two by two.% Note
that all the steps in this construction can be made with ruler and compass.

We shall initially justify this construction, following Aaboe ([1], pp. 54-56. See also
Aaboe [2]).

Consider, in Figure 4, the triangle OK L, in which KL = =z is the side of the
regular decagon inscribed in the circle of radius OK = OL = r. Thus, the angle LOK
measures 36°. Since LOK is an isosceles triangle, its base angles are equal, and so
each one measures 72°. With center K and radius KL = x, draw a circle, and let T’
be the point at which it cuts OL. Then, because of the way it was drawn, K LT is
an isosceles triangle, and therefore the angle KTL also measures 72°. It follows that
the angle TKL measures 36°, and OKT is equal to 36°, and therefore OKT is also an
isosceles triangle. Then, OT = KT = KL = .

Since the triangles OK L and KT L are similar, we have

OL KT
LK TL’

5See Ptolemy, [9], I, 10, On the size of chords in a circle, pp. 14-15.

SEuclid shows, in Proposition XIII.10 of the Elements, that the sides of the regular dodecagon,

pentagon and hexagon inscribed in a circle form a right-angle triangle. This implies that PR will be
the side of the regular pentagon.




A

Figure 4: The triangles LKT and KOL are similar

that is,

T x
- = — 22 +re—1r*=0.
T r—=u

The only positive root of this equation is

x = %T(\/S —1).

Let us return to Figure 3. The triangle POM has a right angle, and therefore

2
PM2 =2 4 (g) . PM = (g) V5.

So,

11
OR:RM—OM:PM—OM:g\/g—ir:57“(\/5—1).

Thus, the segment OR is the side of the regular decagon. It is now easy to construct
the regular pentagon: it is sufficient to join the vertices of the decagon, two by two.

We can make some comments about the treatment presented by Aaboe, which
is mathematically correct, but deserves pedagogical and, equally important, historio-
graphic remarks.

Firstly, as far as pedagogy is concerned, Aaboe says simply that it is “more conve-
nient” to find the side of the regular decagon, without explaining why this is so. We
will try to show why it is actually more convenient to work with the regular decagon.

Figure 5 shows a pentagon and a regular decagon inscribed in a circle. If we construct
the decagon, we can construct the pentagon, joining the vertices of the decagon two by
two. It is also true that starting with the pentagon we can construct the decagon. As
a matter of fact, if you can construct with ruler and compass the regular polygon of n
sides it is possible to construct the regular polygon of 2n sides, and conversely.”

"More generally, if r and s are co-prime natural numbers, and we know how to construct the
polygons with respectively r and s sides, it is then possible to construct the polygon with rs sides.
Euclid proves this for the case r = 3 and s = 5 in the last proposition of Book IV (IV.16).



Figure 5: The regular pentagon and decagon inscribed in a circle

Why should one construct the regular decagon and not, directly, the regular pen-
tagon? In Figure 5, the angles D/O\E', Eﬁ’, GOS ... , COD are equal, since they are
the central angles of the regular decagon ABCDEFGHKL. Furthermore, the angle
ODE is equal to the angle @, and so to half the arc KHGFE. As this arc is equal
to four times the arc DE, we see that the angle ODE is equal to twice the angle D/O\E,
that is

ODE =2 x DOE.

Thus, in the isosceles triangle ODFE, each base angle is twice the vertex angle.
Therefore, to construct the regular decagon inscribed in the circle of radius R, it is
enough to construct an isosceles triangle ABC' such that its base angles are both twice
the vertex angle and then draw in the circle a triangle DEF equiangular with the
triangle ABC.

The crucial point is that (See Figure 5) in the isosceles triangle OAB the vertex

angle, AOB , is equal to half the base angles. As shown by Aaboe, the fact that the
triangles OK L and KTL are similar (Figure 4) implies that the radius of the circle,
OK, is divided by T in extreme and mean ratio.

Secondly, we have historiographic problems. Aaboe uses the fact that we are dealing
with angles that measure 72° and 36°, respectively. However, to measure angles this
way is entirely avoided in the Elements. In fact, it was unknown in classical Greek
mathematics. The only thing necessary, as we explained above, is the relationship
between the angles ODE and DOFE (Figure 5), which follows from the results contained
in the Elements about the angles inscribed in a circumference. Euclid never measures
lengths, areas, volumes and angles. Since the Greeks did note have the real numbers,
they did not measure magnitudes, they dealt directly with these, comparing them.
For example, angles are compared with the right angle, polygons are transformed into
squares (they are “squared”) and the resulting squares are compared. Of course one
can add segments, angles, areas and volumes.

Aaboe’s presentation is mathematically correct. His mistake is to encase it in Greek
dress, giving the reader the impression that the Greeks, in particular Euclid, worked in
the manner shown by him, Aaboe.



More serious in Aaboe’s presentation is his use of the so-called “Greek geometric
algebra” ® which has been the subject of heated discussion in the last decades. In
particular, Sabetai Unguru has denounced, in several papers (see [3] and also [11] for
full references), the anachronistic interpretation of Greek and Babylonian mathemat-
ics done by the proponents of the “Greek geometric algebra”, in the light of modern
developments, that is, the widespread algebraization of mathematics. °

The anachronism of Aaboe’s text is shown particularly in the interpretation of
Proposition 11.6 of the Elements as a way to solve second degree equations, failing
to understand its importance in the geometric context of the Elements.! Elements
I1.5 and I1.6 certainly can be interpreted in an algebraic way, totally out of the context
of classical Greek mathematics, but then one should not claim to be presenting what
Euclid did. ™

We now present Euclid’s construction of the regular pentagon.

4 The construction of the pentagon by Euclid

The construction of the regular pentagon inscribed in a circle is the climax of Book IV of
Euclid’s Elements. It should be stressed that this construction does not use similarity.
It is based entirely on equivalence of areas. Once discovered, it can easily be done. We
emphasize, moreover, that the construction in Book IV clearly shows the strength of
the method of the equivalence of areas, widely used by Euclid, until Book V., exclusive.
Since Euclid, in Book XIII of the Elements constructs, with ruler and compass,
the five regular polyhedra, he could not avoid constructing, beforehand, the regular
pentagon, because the faces of the regular dodecahedron are regular pentagons.

M

Figure 6: The angle at M is half the angle ]\TQ\P

Euclid, like other classical Greek mathematicians, merely presents his results logi-
cally linked. Thus, we give, initially, a brief survey of his construction. We recommend

8 “Greek geometrical algebra” was created, at the end of the 19th and beginning of the 20th centuries,
by Neugebauer, Tannery and Zeuthen (See, for example, [15]). It became very generally accepted
because of Heath’s influential and well known translations of Greek mathematics. It was continued by
van der Waerden, who agreed with this interpretation.

9A thoughtful and balanced view of this question can be found in Vitrac ([12], pp. 366-376)

100f course, Ptolemy’s original treatment is entirely in accordance with the methods and tools
developed in the Elements of Euclid.

1A broad and deep discussion of this interpretation of Greek mathematics can be found in Fried
and Unguru, [3].



returning to this initial description, after reading through the text. The construction
itself is done in Propositions 10 and 11 of Book IV.

Euclid starts from the easily seen fact that in the regular pentagon, M NPQR
(Figure 6), the isosceles triangle M QP is such that its vertex angle is equal to half of
each base angle. If we can inscribe such a triangle in a circle, we can construct the
pentagon.

To perform this construction Euclid requires two lines of argumentation. The first,
applying II.11 to the radius of the circle, KV, he finds the point Z such that the
rectangle on KV and ZV is equal to the square on KZ (See Figure 7). 12 Let T, on the
circumference, be such that VI = KZ. '3 Then Euclid draws an auxiliary circle, which
passes through points K, Z and T' '* and using results about secants and chords in a
circle, contained in 11.36 and II1.37, he shows, finally, that the triangle K'V'T satisfies
the required property, i.e., the angle at its vertex is equal to half of each base angle.

[

A

Figure 7: The triangles KVT and ZVT

After this, to construct the regular pentagon inscribed in a given circle, Euclid
inscribes in this circle a triangle equiangular with the triangle just constructed, K'V'T.

We now turn our attention to the actual construction. We state, without proofs,
the results from the Elements he needs, following Heath’s versions ([6] and [7]).

We begin with Proposition I1.6, very important in the Elements.

Proposition I1.6: If a straight line be bisected and a straight line be added to it in
a straight line, the rectangle contained by the whole with the added straight line and
the added straight line together with the square on the half is equal to the square on
the straight line made up of the half and the added straight line.'®

In other words, the rectangle with sides AD, DB, together with the square on C'B,
is equal to the square on C'D.
Euclid uses also the following result, which is a consruction problem

Proposition I1.11:To cut a given straight line so that the rectangle contained by the
whole and one of the segments is equal to the square on the remaining segment.

12Using the theory of proportions, expounded in Book V, and applied to figures in Book VI, this is
equivalent to the division of KV in mean and extreme ratios.

13This can be done by proposition I1.2.

“Euclid shows how to do this IV.5.

15We recall that, for Euclid, straight line can mean either a segment or the whole straight line.



Figure 8: Elements I1.6

That is, Euclid shows how to find, using only a straightedge and a compass, a point
C on AB such that the rectangle of sides AB and C'B is equal to the square on AC'
(Figure 9).

Figure 9: Elements I1.11

Now we need some results about circles and their chords, from Book III of the
Elements.

Proposition I11.36: If a point be taken outside a circle and from it there fall on
the circle two straight lines, and if one of them cut the circle and the other touch it,
the rectangle contained by the whole of the straight line which cuts the circle and the
straight line intercepted on it outside between the point and the convex circumference
will be equal to the square on the tangent.

That is, the rectangle with sides PR and PS is equal to the square on PT (Figure
10).

Proposition 111.37: If a point be taken outside a circle and from the point there fall
on the circle two straight lines, if one of them cut the circle, and the other fall on it,
and if further the rectangle contained by the whole of the straight line which cuts the
circle and the straight line intercepted on it outside between the point and the convex



Figure 10: Elements 111.36

circumference be equal to the square on the straight line which falls on the circle, the
straight line which falls on it will touch the circle.

This proposition is the converse of 111.36.
For the last step before reaching the construction of the regular pentagon, we will
use two additional results, also without proof:

Proposition I11.22: The opposite angles of quadrilaterals in circles are equal to two
right angles.

Figure 11: Elements 111.22

That is, for the quadrilateral ABC' D of Figure 11, inscribed in a circle, the angles
BAD and BCD are equal, taken together, to two right angles. The same is true of the
angles ADC and ABC.

Proposition I11.31: In a circle, the angle in the semicircle is right, that in a greater
segment less than a right angle, and that in a less segment greater than a right angle;
and further, the angle of the greater segment is greater than a right angle, and the
angle of the less segment less than a right angle.

This means that in the circle of Figure 12, the angle BAC is right, the angle ABC
in the arc greater than the semicircle is less than a right angle, and the angle ADC in
the arc ADC less than the semicircle, is greater than a right angle.

We need also the following result.



Figure 12: Elements I11.31

Proposition I11.32: If a straight line touch a circle and from the point of contact
there be drawn across, in the circle, a straight line cutting the circle, the angles which
it makes with the tangent will be equal to the angles in the alternate segments of the
circle. . .

This proposition states that the angle DBF is equal to the angle BAD (Figure 13).

Figure 13: Elements 111.32

What remains now is just to construct the regular pentagon. The essential step is
the following construction problem. Euclid’s text can be found in Heath ([7]).

Proposition IV.10: Construct an isosceles triangle in which each base angle is double
the vertex angle.

Let a line segment AB be given (Figure 14). Using I1.11, find the point C' such that
the rectangle of sides AB, C'B is equal to the square on C'A.

Draw the circle with center at A and radius AB. From B, draw BD equal to AC.
Then, the triangle ABD has the required property, namely, that each of the base angles
is equal to twice the vertex angle.

We summarize below, in a symbolic and compact way, the reasoning of Euclid. In
what follows, ret (AB, BC') designates the rectangle of sides AB and BC, and quad
(AC) represents the square on the segment AC.

The point C' is such that ret(AB, BC) = quad(AC).



Figure 14: Elements IV.10

Draw AD and DC' and construct the circle AC'D circumscribed to the triangle AC'D
(This can be done by IV.5).
Since AC' = BD, by construction, we have
ret(AB, BC) = quad(BD).
But then, it follows from II1.37, that BD is tangent to the circle AC'D.
By II1.32, we have
BDC = DAC — BDC + CDA = DAC + CDA.

Thus,

BDA =DAC + CDA,
Consider, in the triangle AC D, the external angle BCD. Then

BCD = DAC + CDA = BCD = BDA.
Since B/D\A:D/B\A, we have

BCD = BDA = DBA — BCD = DBC — DB = DC.

Since DB = C'A, it follows that CA = C'D, and therefore CAD = CDA.
Thus,

CAD + CDA = 2CAD — BCD =2 x CAD,

and therefore

BCD = BDA = DBA =2 x CAD = 2 x BAD.
Thus, in the triangle ABD, each base angle is twice the vertex angle. 0
Before the final construction, we need

Proposition IV.2: In a given circle to inscribe a triangle equiangular with a given
triangle.



Figure 15: Elements IV.2

Let the circle and the triangle DEF be given (Figure 15). Let GH be the tangent to
the circle, passing through the point A. Draw the angle HAC equal to the angle DEF
and the angle GAB equal to the angle DFE. Draw BC. Then, by II1.32, the angle
FA\C’ is equal to the angle ABC and therefore the angle ABC is equal to the angle
DEF. Slmllarly, we can show that the angles ACB and DFE are equal. Therefore,

the angle BAC will be equal to the angle EDF.
Therefore, in the given circle there has been inscribed a triangle, with angles respec-

tively equal to the angles of the given triangle.
O

We can finally present the result we set out to prove.

Proposition IV.11: In a given circle to inscribe an equilateral and equiangular pen-
tagon.

Figure 16: Elements IV.11

Construct the triangle FGH in which each base angle is twice the vertex angle.
Inscribe the triangle AC'D in the circle, with the angle CAD equal to the angle at F
and the angles ACD and CDA equal, respectively, to the angles at G and H (Figure
16).

Bisect the angles ACD and ADC by EC and DB, respectively. Draw the straight
line segments AB, BC, DE and EA.

Since each one of the angles ACD and CDA is twice the angle @, and have been
bisected by the lines C'E and DB, respectively, it follows that the angles W, A/C’\E',



E/C’\D, CDB and BDA are equal to one another. But then the arcs AB, BC, CD,
DE, EA are equal, and so the line segments AB, BC, CD, DE, EA are also equal.

Therefore the pentagon ABCDE is equilateral.

Now, since the arc AB is equal to the arc DE, if we add the arc BC'D to both, it
follows that the arc ABC'D is equal to the arc EDC B. From this we see that the angle
BAF is equal to the angle AED.

For the same reason, each of the angles ABC , B/C\D, CDE is also equal to each of
the angles BAFE and AED.

Therefore the pentagon is equiangular, and so it is a regular pentagon.

OJ

Obviously, as noted by Hartshorne ([5], pp. 45-51), Euclid’s construction can be
modified, to become quicker and more efficient. It is enough to apply IV.10 directly to
the circle in which we want to inscribe the regular pentagon.
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